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Abstract 

Our large satellite population continues to rise due to an increasing launch frequency, on-orbit 

explosions, on-orbit collisions, and successful anti-satellite missile tests. Space situational awareness 
requires space science professionals who are highly skilled in space surveillance and astrodynamics. 

Typically, such subjects are introduced to undergraduate or graduate students; however, secondary 

school students with an aptitude in science and algebra can be introduced to basic space surveillance and 

astrodynamics concepts, in a way that provides a head start to studying problems associated with satellite 
overpopulation and space debris management. This paper proposes a method of initial orbit 

determination which can determine a low Earth orbiting satellite’s orbit radius, inclination, and right 

ascension of the ascending node from a single image obtained of the local zenith. This “Zenith Method” 
introduces secondary school students to the basic concepts and difficulties that are associated with space 

surveillance and astrodynamics. 

I Introduction 

Space surveillance refers to propagating satellite orbit elements, known as Two-Line Element Sets 

(TLEs), which serve to locate and track satellites, and to determine satellites’ orbit elements from the 

resulting tracking data. Some might assume that space surveillance can be performed using only complex 
and very expensive equipment. Although this is true in cases where highly accurate orbit elements of very 

small or low reflectance satellites is required, the availability of inexpensive, retail astronomical detectors, 

such as charge-coupled devices (CCDs) and computerized goto
1
 telescopes has allowed backyard amateur 

astronomers to perform space surveillance inexpensively. 

On any clear night, a number of low Earth orbit (LEO) satellites can be detected with the naked eye for up 

to two hours after evening twilight or for up to two hours before dawn. A CCD camera fitted with a small 

camera lens can detect fainter, and therefore a larger number, of LEOs within the same time. Most of the 

detected LEO satellites will be within 1,000km in altitude or within 7,400km from the Earth’s center
2
. 

If a satellite is observed to traverse the sky over its entire pass (assuming no eclipses), it will appear to 
move very slowly near the horizon and much faster near the local zenith. This is mainly due to the 

constantly varying observed transverse component of the orbit’s tangential (along-track) velocity vector. 

When observed close to the horizon, most of the satellite’s velocity will be moving away or toward the 
observer’s location. The velocity’s radial component will, in this case, be much larger than its observed 

transverse component. When observed near zenith, the satellite velocity’s transverse component will be 

much larger than its radial component. In this case, the velocity’s transverse component will be nearly 

equal to the satellite’s tangential orbit velocity, unless the satellite has a high orbit eccentricity, or unless 
the satellite’s orbit radius is large enough such that the Earth’s rotational velocity is comparable in 

magnitude [1]. 

Provided that a LEO satellite is bright enough to be detected, when imaged with a camera, a suitable time 

exposure (integration time) will result in a star field background with a streak. The streak depicts the 

                                                             
1 “Goto” refers to an ability to point to a celestial object at the push of a button or command from a computer. 
2
 Assuming that Earth’s gravitational and geometric centers are co-located. 
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satellite’s travel over the exposure time. If the exposure time is suitably short such that the satellite does 

not leave the detector’s field of view (FOV), the streak will have two endpoints. The angle between the 
two endpoints can be estimated by determining the image’s scaling factor (the number of image pixels per 

degree in the sky) and then estimating the x-y pixel location of the two endpoints. The satellite’s apparent 

angular velocity can then be estimated by dividing the estimated streak angle by the image’s exposure 

time. 

When assuming a circular orbit, a LEO satellite’s apparent angular velocity observed at local zenith can 
be used to estimate the orbit’s radius, which is also known as the semi-major axis (SMA). Using this 

assumption, the argument of perigee is undefined and the true anomaly can be defined from any 

convenient point in the orbit (such as the ascending node). Kepler’s Third Law of Orbit Motion can assist 
in determining the satellite’s period of orbit (and therefore its mean motion

3
) from the estimated SMA. 

Estimates of the satellite’s orbit inclination
4
 and its right ascension of the ascending node (RAAN)

5
 can 

be made using the streak’s orientation, based on its apparent direction of travel in the image and the 

image’s orientation with respect to the equatorial coordinate system. 

This paper proposes a simple method of initial orbit determination (IOD) using images of LEO satellites 
observed near the local zenith. The suggested equipment and setup procedure is presented in Section II. 

The derivation of the IOD equations and their conditions of use are presented in Section III. In Section 

IV, a number of comparisons between estimated LEO orbit elements extracted from CCD images and 

their most likely orbit elements (from TLEs) are presented and discussed. 

II Equipment and Setup 

A. Equipment 

To obtain images of LEO satellites near the local zenith, a detector with a FOV greater than 5° is 

recommended. The lens should have a focal length of between 50mm and 200mm. The exposure time 

should be short enough so that the background stars will appear as points (not streaks) and long enough to 

show the satellite motion as streaks (not dots). 

The detector should have the capability of recording the image’s date and time to the nearest second or 
better. If the exposure time is set manually (for example, at the “bulb” (B) setting) the detector should 

have the ability to record the exposure time. The most convenient setup would be capable of 

automatically storing all images, including headers, to a digital storage device. 

To obtain images with a CCD camera, CCD controlling software is essential. This software is normally 
included with a new CCD camera. For convenience, this software should also be able to read the images 

and display the x and y pixel values of the mouse cursor location within the image. If using a DSLR
6
 or 

other retail digital camera, some image processing software is required in order to read the x and y pixel 

values from the images. 

B. Suggested Setup Procedure 

The detector can be pointed to the local zenith by attaching it to a small and sturdy tripod and then placing 
a small bubble level on the camera body such that the apparatus can be leveled with the camera lens 

pointed towards the zenith. Although the detector’s azimuthal (horizon) orientation is not particularly 

important, the orientation of the part of the lens corresponding to the top of an image can be roughly 

                                                             
3 The mean motion is the reciprocal of the orbit period, typically stated in orbits·day-1. 
4 Inclination refers to the orbit plane’s angle with respect to the Earth’s equatorial plane. 
5 RAAN is the right ascension (RA) coordinate of the intersection point of the orbit plane and the equatorial plane as 

the satellite crosses the equatorial plane from south to north. 
6
 Digital Single Lens Reflex. 
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aligned with the true north (roughly towards Polaris’ azimuth). This allows for easier identification of the 

streaks’ orientations during image analysis. 

When imaging the satellites, the camera should be as stationary as possible. A computer-controlled device 
(such as a CCD) is the most convenient detector because it can be controlled remotely with a computer 

interface. Remote control is also possible with a DSLR camera. If the camera cannot be remotely 

controlled, the shutter timer can be used to obtain images without having to push any buttons on the 

camera during exposure times. 

It will not be immediately clear which satellites will be detectable during imaging. However, several 
online resources can predict when naked eye satellites will be observable, including the predicted times of 

their maximum elevations (90° being the local zenith). When using a computer controlled detector, it may 

be possible to automatically obtain and store images over several hours, thus creating an optical fence that 
will detect all suitably bright satellites that pass within its FOV. This optical fence will also serve to 

remove all bias with respect to choosing the most accessible satellite targets. 

An exposure time of 5s or less is recommended because the satellite angular velocity at the local zenith 

can be as high as 3°·s
-1

. It is not necessary to obtain one image after another as quickly as possible 

(maximum cadence); however, if the maximum amount of satellites is desired or if the FOV is under 5°, 

then a high cadence is recommended. 

III Derivations 

The derivations are not recommended for secondary school students; however, the final results and their 

conditions can be used by students to estimate an orbit’s SMA, inclination and RAAN from images of 

LEO satellites obtained near the local zenith. 

The derivations required several important assumptions; the first, being a circular orbit (zero eccentricity). 
For the closer LEO satellites orbiting at less than 1,000km in altitude, this is not an unreasonable 

assumption, since a high eccentricity LEO orbit would necessarily intersect the Earth’s surface and 

therefore, could not exist. The second assumption is that a satellite’s transverse angular velocity is 

constant throughout its travels through the CCD FOV (when pointed at local zenith). This assumption 
also applies to the angular velocity estimated from a streak’s endpoints. The third assumption is that the 

satellite’s instantaneous equatorial coordinates correspond to the midpoint between the streak endpoints. 

The fourth assumption is that the observed satellite’s altitude is the difference between its circular orbit 

radius and the Earth’s radius at the observer’s latitude. 

A. Semi-Major Axis 

The SMA (a) is defined as the average of a satellite’s perigee (closest) distance and its apogee (furthest) 

distance. When assuming a circular orbit, the SMA becomes a constant orbit radius. When observed near 

the local zenith, the satellite’s tangential orbit velocity (v) is related to the satellite’s apparent angular 

velocity (ω) and its altitude above the observer (h) according to Eq. 1. 

The satellite’s tangential orbit velocity is also related to the SMA by Kepler’s Third Law, shown in Eq. 2, 
which equates the centripetal acceleration with the gravitational acceleration, where μ is the Earth’s 

gravitational parameter (398,600.4418 km
3
·s

-2
). The fourth aforementioned assumption that relates the 

satellite’s SMA with its altitude is shown in Eq. 3, where RE is the Earth’s radius at the observer’s latitude 

[1]. 

v h             (1) 

2 v
a


            (2) 
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E a h R               (3) 

Squaring Eq. 1, equating it with Eq. 2, and substituting Eq. 3 for the SMA yields Eq. 4 [1]. The three 

roots of Eq. 4 will be comprised of one positive real number (physically possible) and two negative real 

numbers (not physically possible). The positive real root of Eq. 4 can be determined with the Cubic 
Formula and DeMoivre’s Theorem. Equation 3 can determine the corresponding SMA from the estimated 

altitude. The full analytical solution that determines the orbit’s SMA is shown in Eq. 5. The only 

parameters required to solve Eq. 5 are RE (constant for a specific observation latitude) and ω. 

3 2

E 2
0  h R h




         (4) 

1E
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E

2 1 27
1 cos cos 1

3 3 2

R
a

R






    

     
    

            (5) 

In order to use Eq. 5, the satellite’s angular velocity should satisfy the condition shown in Eq. 6. The 
minimum value is approximately 11.1’·s

-1
, depending on the observer’s latitude. The minimum angular 

velocity corresponds to a maximum SMA of approximately 8,500 km (2,120 km altitude), which can 

easily serve as an upper boundary for the majority of LEO satellites. If the angular velocity is less than 

11.1’·s
-1
, the solution of Eq. 5’s arc-cosine term becomes imaginary and the hyperbolic cosine (cosh) is 

required. Since secondary school students will likely not be familiar with the concept of hyperbolic 

cosines, the limit shown in Eq. 6 should be recommended. 

3

E

27

4R


                   (6) 

A plot of the determined SMA versus the angular velocity according to Eq. 5 is shown in Fig. 1. The 
black dotted vertical line indicates the minimum angular velocity according to Eq. 6. The maximum 

angular velocity (3.0°·s
-1

) roughly corresponds to the minimum possible LEO SMA. When the angular 

velocity is between 0.6°·s
-1

 and 3.0°·s
-1

, the slope is low and the SMA’s uncertainty is also low (relative 

to the angular velocity uncertainty). For an angular velocity between 0.6°·s
-1

 and 0.185°·s
-1

, the slope 

greatly increases, thereby increasing the SMA’s uncertainty. 

 

Fig. 1. SMA versus angular velocity. 
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B. Inclination 

Inclination (i) is the angle between the orbit plane and the Earth’s equatorial plane, as illustrated in Fig. 

2(a). The inclination can have a value between 0° and 180°, where a value between 0° and 90° indicates a 

“prograde” orbit and a value between 90° and 180° indicates a “retrograde” orbit. 

When it is observed at the local zenith, as illustrated in Fig. 2(b), a satellite will have some geocentric RA 

and declination (dec.) equatorial coordinates (αGC and δGC, respectively). A coordinate translation is 

typically required when converting from geocentric to topocentric equatorial coordinates or vice-versa. 

However, when the satellite is observed near the local zenith, the Earth’s center (point C of Fig. 2(b)), the 
observer’s location (point P of Fig. 2(b)), and the satellite’s position are nearly in a straight line. In that 

case, the topocentric equatorial coordinates are approximately equal to the geocentric equatorial 

coordinates, as shown in Fig. 2(b). The satellite’s RA coordinate will be at the angle γ from the RAAN, as 

shown in Fig. 2(b) and Eq. 7. 

The satellite’s dec. coordinate can be expressed in terms of the inclination (i) and the γ angle, as shown in 

Eq. 8. The reciprocal of Eq. 8 results in Eq. 9. Using trigonometric identities and rearranging terms, Eq. 9 

can be simplified to yield Eq. 10. 

         

a) Inclination and ascending node.            b) Geocentric and topocentric RA and dec. 

Fig. 2. Inclination, ascending node, and equatorial coordinates. 
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Equation 10 conveys information about a satellite’s instantaneous position, but not its motion. The 
inclination can only be determined from a streak’s orientation, which requires the rates of both the RA 

and dec. coordinates (or the “x” and “y” pixel rates) over the exposure time. Knowing the instantaneous 

rates of change of both RA and dec. would be ideal; however, this is not possible when an image with a 
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non-zero exposure time is provided. The “streak slope” can be substituted for these rates of change, as 

shown in Eq. 11. The streak slope is defined as the ratio of the difference of the streak’s “y” coordinates 
to the difference of the streak’s “x” coordinates. Both pixel differences are defined as the first coordinate 

in time subtracted from the second coordinate, as shown in Eq. 11. 

The cosδ term in the streak slope of Eq. 11 is required because of the “x” coordinate. Since the celestial 

sphere is not a plane, the range of RA coordinates in an image’s FOV will increase as the absolute 

declination increases by a factor of the reciprocal of cosδ. Therefore, the range of RA coordinates in a 
FOV will be the minimum at the celestial equator and the maximum (actually all possible RA 

coordinates) at either of the celestial poles. 

 2 1

2 1

coscos cos  
   

  

d
y yd ydt

d d x x x

dt


   

  
                        (11) 

After taking the derivative of Eq. 10 (orbit inclination is constant in the short term), then substituting the 

streak slope for the rates of change, and rearranging terms, Eq. 12 results. Equations 10 and 12 can then 

be equated and rearranged to yield Eq. 13. 

2 tan sec
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 

 
              (12) 
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Equation 13 relates the satellite’s RA angle from the RAAN (γ) to the dec. and the streak slope. Equation 

13 can be expressed as a function of sinγ, as shown in Eq. 14. Equation 14 can then be substituted for 

sin
2
γ in Eq. 10, yielding Eq. 15. When the satellite is observed near the local zenith, Eq. 15 relates the 

orbit inclination to the satellite’s dec. coordinate and its streak slope. 
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Equation 15 will give a solution between the observer’s latitude and 90°; however, the orbit could be 
retrograde (an inclination greater than 90°). Equation 16 states the condition required to determine the 

orbit inclination when the streak’s Δx value is negative. When using radians, replace the 180° in Eq. 16 

with π radians. 

Figure 3 plots the inclination for streak slopes between -50 and 50 at an observer’s latitude of 45°. The 

green lines indicate ascending (north to south) motion. The red lines indicate descending (north to south) 
motion. The arrows denote the apparent direction of travel in the image, assuming the detector is aligned 

with the equatorial coordinate system. For streak slopes greater than 5 and less than -5, the inclination 
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uncertainty will be small, relative to the slope uncertainty. For streak slopes between -5 and 5, the 

inclination uncertainty will be more sensitive to the slope uncertainty. 

2

2

o 1

sin

( 0) 180 tan
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

  
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 
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y

x
i x




             (16) 

 

Fig. 3. Inclination versus streak slope. 

C. Right ascension of the ascending node 

Equation 13 determines the RA angle from the ascending node to the satellite’s RA in the direction of 
ascending RA, as illustrated in Fig. 4. Substituting Eq. 7 into Eq. 13 and rearranging the result determines 

the RAAN, as shown in Eq. 17. 

Equation 13 will give a solution for γ that is between -90° and 90°; however, γ can range from -180° to 

180°. When the satellite is ascending (increasing dec.), then Eq. 17 can be used as-is. When the satellite is 

descending, then the condition shown in Eq. 18 is required. The “±” in Eq. 18 refers to a streak with an 
increasing (+) x pixel value or a decreasing (-) x pixel value, corresponding to a -180° or a +180° 

correction, respectively ( 180°). When using radians, replace the 180° in Eq. 18 by π radians. 

 

Fig. 4. The γ angle from ascending node to the satellite at zenith. 
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Figure 5 shows the γ angle for streak slopes between -50 and 50 at an observer latitude of 45°. The green 

lines indicate ascending (north to south) motion. The red lines indicate descending (north to south) 

motion. The arrows denote the apparent direction of travel in the image when the detector is aligned with 
the topocentric equatorial coordinate system. For streak slopes greater than 3 and less than -3, the γ angle 

uncertainty will be small, relative to the slope uncertainty. For streak slopes between -3 and 3, the γ angle 

uncertainty will be more sensitive to the slope’s uncertainty. 

 

Fig. 5. γ angle versus streak slope. 

IV Results 

From 00:18 to 03:34 UTC April 6, 2016, a single SBIG
7
 model ST-9XE CCD camera fitted with a 50mm 

focal length Rikenon lens set at f/2 was pointed at the local zenith from a location of longitude -76° 34’ 

08”
8
 and geodetic latitude 44° 12’ 49” to conduct a survey of all detectable LEO satellites that passed 

within 5° of the local zenith. A total of 51 satellites were positively detected and correlated, 27 of which 

were selected for IOD with the Zenith Method. For each orbit element, the TLE values (aTLE, nTLE, iTLE, 

and ΩTLE) were extracted from TLEs with epochs that were the closest to the observation epoch. The ΩTLE 
values were extracted from TLEs propagated to the imaging time in order to minimize the secular 

precession effects. 

Table 1 compares the orbit element estimation results and their corresponding TLE values, in order of 

                                                             
7 Santa Barbara Instrument Group 
8
 A negative longitude indicates a meridian west of Greenwich. 
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ascending TLE SMA. The final satellite listed in the table had an orbit radius of over 8,500km and 

therefore had an angular velocity less than 11’·s
-1
. Its SMA was therefore estimated with the hyperbolic 

cosine version of Eq. 5. 

Table 1. Estimated versus TLE LEO orbit elements. 

#
9
 Common Name 

a  

(km) 

aTLE 

(km) 

n 

(d
-1

) 

nTLE 

(d
-1

) 

i 

(°) 

iTLE 

(°) 

Ω 

(°) 

ΩTLE 

(°) 

29508 CZ-4 Debris 6797.5 6809.6 15.491 15.450 97.3 97.7 136.5 133.2 

39195 SL-27 R/B 6845.7 6854.7 15.328 15.298 79.0 74.7 314.8 322.9 

19046 SL-3 R/B 6900.4 6939.4 15.146 15.018 97.4 97.6 153.0 148.8 

36088 SJ-11-01 7053.0 7071.9 14.657 14.598 97.9 98.2 143.5 145.2 

24792 Iridium-8 7158.2 7155.8 14.335 14.342 86.0 86.4 138.4 141.2 

09443 Cosmos-858 7121.5 7156.5 14.303 14.340 74.6 74.0 132.3 130.5 

08027 SL-3 R/B 7197.4 7229.7 14.218 14.073 80.8 81.2 117.1 116.5 

39228 SL-24 R/B 7444.7 7251.0 13.515 14.061 97.7 97.5 139.3 141.0 

02828 GGSE-4 7221.0 7281.2 14.148 13.973 69.4 70.0 137.0 136.0 

10702 Landsat-3 7269.9 7283.6 14.006 13.966 99.1 98.9 141.4 137.6 

24773 SL-8 R/B 7373.0 7364.9 13.713 13.736 87.4 82.9 330.5 337.4 

07008 Cosmos-627 7413.8 7367.6 13.600 13.728 87.3 83.0 344.5 346.2 

05050 Cosmos-400 7537.9 7370.1 13.266 13.721 70.4 65.8 351.9 351.4 

40341 CZ-4C R/B 7166.3 7381.4 14.311 13.690 62.7 63.5 111.5 112.9 

00447 Thor Ablestar R/B 7305.2 7491.1 13.904 13.390 50.5 50.1 21.6 32.1 

40878 Yaogan-27 7555.0 7578.4 13.221 13.160 101.1 100.5 163.2 158.0 

39410 Yaogan-19 7524.3 7582.2 13.133 13.150 100.0 100.4 167.4 170.3 

06320 SL-8 R/B 7726.2 7732.0 12.784 12.769 78.8 74.0 347.0 354.7 

31571 Globalstar-M065 7543.1 7791.8 13.252 12.623 54.9 52.0 9.8 13.6 

04320 ITOS-1 (Tiros-M) 7788.8 7834.1 12.630 12.520 101.0 101.9 158.2 159.2 

08184 Thorad Delta 1 Debris 7785.3 7842.8 12.638 12.475 102.0 101.7 170.1 166.2 

39484 Cosmos-2489 7925.5 7872.6 12.305 12.429 86.9 82.5 321.0 329.6 

10288 Cosmos-942 7890.9 7875.4 12.385 12.422 74.0 74.0 139.6 141.8 

16910 H-1 R/B (Mabes) 7593.7 7916.4 13.120 12.326 47.0 50.0 100.3 96.3 

13168 SL-8 R/B 7933.2 7958.2 12.287 12.229 78.8 74.1 351.6 359.4 

25962 Globalstar-M034 7883.9 8152.7 12.402 11.794 53.1 52.0 103.9 102.2 

41108 Fregat Debris (Tank) 8806.2 8612.1 10.506 10.863 50.5 50.4 3.7 9.3 

 

The satellite’s altitude does appear to have some effect on the estimated SMA. Generally, the higher 

altitude satellites will have smaller streaks (for a specific CCD FOV and exposure time) and they would 
be more susceptible to the streak length uncertainty. The two highest altitude satellites listed in Table 1 

have estimated SMAs that differ from their respective TLE values by several hundred kilometers. 

Globalstar-M034’s estimate was approximately 300km less than the TLE value, while the Fregat Debris’ 
estimate was approximately 200km greater than the TLE value. The SMA versus angular velocity plot 

shown in Fig. 1 does not include a SMA greater than 8,500km; however, it does suggest that the SMA 

uncertainty becomes more sensitive to the angular velocity uncertainty for SMAs that are greater than 

7,000km. Table 1 seems to confirm this hypothesis. For example, all satellites with SMAs less than 
7,200km appear to have estimates within 50km of their TLE values. Satellites with SMAs greater than 

7,200km can have differences as large as several hundred kilometers from their corresponding TLE 

values. 

                                                             
9
 The NORAD catalog number 
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For the most part, the estimated inclinations in Table 1 are all within a degree of their corresponding TLE 

values. This was unexpected, especially when considering the higher slopes between inclinations of 45° 
and 85° in Fig. 3. The five satellites with inclinations between 50° and 53° had estimations within 3° of 

their TLE values. However, several satellites with inclinations between 65° and 80° had estimations 

within 6°. There does not seem to be any correlation between the estimated inclination difference from 

the TLE value and the satellite’s altitude. 

The majority of the estimated RAANs appear to be within 3° of their corresponding TLE values. This 
might be due to the choice of the satellite’s RA (midpoint of the streak). This was also unexpected, since 

Fig. 5 indicated that the RAAN estimate uncertainty would become more sensitive to the slope 

uncertainty at γ angles between 15° and 165° and between -15° and -165°, which are the majority of the γ 
angles. As seen with the inclination estimates, there does not seem to be any correlation between the 

estimated RAAN difference from the TLE value and the satellite’s altitude. 

V Conclusions 

The Zenith Method can estimate a LEO satellite’s SMA, inclination and RAAN when it is observed at the 

local zenith. The method appears to be more reliable for those LEOs orbiting at less than 850km in 

altitude. The estimates of inclination and RAAN at any LEO altitude do appear to be more accurate than 

predictions might suggest. 

From a secondary school student’s perspective, the Zenith Method of IOD would appear to be a powerful, 

yet relatively simple, orbit determination tool. At face value, a LEO satellite’s SMA, inclination, and 

RAAN can be determined very quickly and somewhat accurately by simply estimating its streak 
endpoints, determining its angular velocity and its streak slope, and then ‘‘plugging’’ these values into the 

equations shown in this paper. The real test of this method is not how well the orbit elements compare 

with the TLE values but if the satellite can be relocated at some future time when propagating the 

estimated elements. 

The most important objective of the Zenith Method is to provide secondary school students with the tools 
required to understand the basics of satellite orbital mechanics; including, orbit determination and orbit 

propagation. When using this method, students should quickly realize that several important orbit 

elements are missing; namely the eccentricity, argument of perigee and the mean (or true) anomaly. They 
should also quickly find that being contained to the local zenith is very confining and the inevitable 

question should be asked: “Can orbit determination be performed when not observing satellites at the 

local zenith?’’ Gauss’ method and more accurate statistical methods (including the concept of residuals) 
may then be introduced. Students should be made aware that although the Zenith Method is not a 

perfectly accurate orbit determination tool; all orbit determination methods are based on measurements 

containing uncertainties. 

The Zenith Method is a bridge between basic science and algebra and the space surveillance infrastructure 

that monitors the satellite population and protects it from harm. By observing real orbiting satellites and 
estimating their orbit elements using the Zenith Method, students are introduced to orbit determination in 

a user-friendly and practical manner. The Zenith Method can motivate students to learn more about the 

exciting adventures of orbit propagation and orbit determination and to eventually pursue a career in the 

space sciences. 
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